9. Zentrische Streckung

Abb. 1

In der Abb. 1 ist der Kopf des Lehrers Lämpel ( aus Max und Moritz von Wilhelm Busch) zu sehen. Den Punkten P(x;y) des kleineren Kopfes sind Punkte P'(2·x;2·y) zugeordnet. Diese Punkte P' bilden ein vergrößertes Bild des Lehrers. Man spricht von einer Streckung S(Z(0;0); 2).

Definition der zentrischen Streckung:

Nach Wahl eines Zentrums Z und eines Streckungsfaktors m wird einem Punkt P ein Punkt P' auf der Geraden ZP zugeordnet mit dem Abstand P'Z= |m| · Abstand PZ.

m > 0: P’ und P liegen von Z aus gesehen in der gleichen Richtung.

m < 0: Z liegt zwischen P und P’.

 Abb. 2

Gesetze der zentrischen Streckung

Bei   zentrischer   Streckung von Strecken fällt auf, dass eine Strecke [AB] auf  eine  parallele Strecke  [A’B’] abgebildet wird, die um den Faktor   |m| länger ist als  [AB].   Dieser Sachverhalt   kann  leicht mit Hilfe des Strahlensatzes bewiesen werden ( siehe Abb. 3) .

 Abb. 3

 Beweis:

Mit S(Z; m) werde eine Strecke [AB] auf eine Strecke  [A’B’] abgebildet. Nach der Definition der zentrischen Streckung gilt:

Nach der Umkehrung des Strahlensatzes sind unter diesen Bedingungen A’B’ und AB parallel.

Somit wird eine Strecke [AB] auf eine parallele Strecke [A’B’] abgebildet. 

Nach dem Strahlensatz gilt:

   Die Bildstrecke [A’B’] ist um |m| größer als [AB].

 

Aus der Parallelität von Gerade und Bildgerade folgt, dass Winkel auf kongruente Winkel abgebildet werden. Man nennt die zentrische Streckung winkeltreu.





Grundkonstruktionen zur zentrischen Streckung (anklicken !)

Zentrische Streckung mit einem Storchschnabel